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Visibility Forecasting

Short-term (6h) visibility forecasting important for aviation

Currently, GFS MOS and GFS LAMP give categorical forecasts
Roquelaure et al (2008, 2009) gave binary probability forecasts using
BMA

We seek a fully probabilistic forecast, giving a full predictive PDF
over all values

University of Washington Mesoscale Ensemble forecast: For each
ensemble member a deterministic forecast equal to the smaller of:

a function of cloud water, rain, cloud ice, snow given by the
extinction coefficients method of Stoelinga & Warner (1999)
clear air RUC forecast, equal to a decaying exponential function of
relative humidity (Smirnova et al 2000)
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Bayesian Model Averaging
(Raftery et al 2005, MWR)

Models the predictive PDF of y as a mixture of conditional PDFs,
hk(y |fk), each corresponding to one of the ensemble forecasts, fk :

p(y |f1, . . . , fK ) =
K∑

k=1

wkhk(y |fk)

wk is the weight of the k-th member (between 0 and 1)

hk(y |fk) is itself a mixture, of 2 components:

a point mass at 10 miles
a beta distribution on [0, 10] miles, with PDF

∝
`

y
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´(α−1) `
1− y
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´(β−1)

logit P(y = 10|fk) ≡ log P(y=10|fk )
P(y<10|fk ) = a0k + a1k f

1/2
k

The beta distribution we use has

mean: b0k + b1k f
1/2
k

standard deviation: c0 + c1f
1/2
k
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Estimation

BMA model parameters w1, . . . ,wK , c0, c1 estimated by maximum
likelihood via the EM algorithm

A sliding window training period used

A training period consisting of the previous 25 days worked best:
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Example
Station KONP, Newport, Ore., 6 May 2008

Ensemble range: 4.6− 6.9 miles

Verifying obs (solid vertical line): 7 miles

BMA 80% interval (dashed vertical lines): [5.6, 10] miles
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Reliability Plots for P(y = 10) and P(y ≤ 3)
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Rank Histograms



Rank Histograms



Performance in 2007–2008
(7/9 = 0.78 prediction intervals; 52,303 station obs)

Method CRPS MAE Coverage Width
Ensemble 1.89 2.25 0.54 2.81
BMA 0.87 1.11 0.79 3.77
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Summary

Method for fully probabilistic forecasting of visibility from an
ensemble using Bayesian Model Averaging

Forecasts were calibrated

greatly outperformed raw ensemble

Reference: Chmielecki & Raftery (2011, MWR)

Software for BMA for temperature, quantitative precip, wind speed:
ensembleBMA R package

Probcast: UW Probabilistic forecast for the Pacific Northwest using
BMA: probcast.com

Papers at www.stat.washington.edu/raftery/Research/env.html
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